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Preface

The subject of functional equations forms a modern branch of mathe-
matics. The origin of functional equations came about the same time as
the modern definition of function. From 1747 to 1750, J. d’Alembert
published three papers. These three papers were the first on func-
tional equations. The first significant growth of the discipline of func-
tional equations was stimulated by the problem of the parallelogram
law of forces (for a history see Aczél (1966)). In 1769, d’Alembert
reduced this problem to finding solutions of the functional equation
flx+y) + flx —y) = 2f(z)f(y). Many celebrated mathematicians
including N.H. Abel, J. Bolyai, A.L. Cauchy, J. d’Alembert, L. Eu-
ler, M. Fréchet, C.F. Gauss, J.L.W.V. Jensen, A.N. Kolmogorov, N.I.
Lobacevskii, J.V. Pexider, and S.D. Poisson have studied functional
equations because of their apparent simplicity and harmonic nature.

Although the modern study of functional equations originated more
than 260 years ago, a significant growth of this discipline occurred dur-
ing the last sixty years. In 1900, David Hilbert suggested in connection
with his fifth problem that, while the theory of differential equations pro-
vides elegant and powerful techniques for solving functional equations,
the differentiability assumptions are not inherently required. Motivated
by Hilbert’s suggestion many researchers have treated various functional
equations without any (or with only mild) regularity assumption. This
effort has given rise to the modern theory of functional equations. The
comprehensive books by S. Pincherle (1906, 1912); E. Picard (1928); G.
Hardy, J.E. Littlewood and G. Polya (1934); M. Ghermanescu (1960); J.
Aczél (1966); and M. Kuczma (1968) also advanced considerably the dis-
cipline of functional equations. Recent books by A.N. Sarkovskii and G.P.
Reljuch (1974); J. Aczél and Z. Daréczy (1975); J. Dhombres (1979);
M. Kuczma (1985); J. Aczél (1987); J. Smital (1988); J. Aczél and J.
Dhombres (1989); M. Kuczma, B. Choczewski, and R. Ger (1990); B.
Ramachandran and K.-S. Lau (1991); L. Székelyhidi (1991); E. Castillo
and M.R. Ruiz-Cobo (1992); C.R. Rao and D.N. Shanbhag (1994); B.R.
Ebanks, P.K. Sahoo and W. Sander (1998); P.K. Sahoo and T. Riedel
(1998); D.H. Hyers, G. Isac and Th.M. Rassias (1998); S.-M. Jung (2001);
S. Czerwik (2002); I. Risteski and V. Covachev (2002); and P1. Kannap-
pan (2009) have contributed immensely to the further advancement of
this discipline.

xiii



xiv Preface

This book grew out of a set of classnotes by the first author who
taught functional equations as a graduate level introductory course at
the University of Louisville. Our goal in writing this book is to commu-
nicate the mathematical ideas of this subject to the reader and provide
the reader with an elementary exposition of the discipline. All func-
tions appearing in the functional equations treated in this book are real
or complex valued. We did not cover any functional equation where the
unknown functions take on values on algebraic structures such as groups,
rings or fields. The reason for this is to make the presentation as accessi-
ble as possible to students from a variety of disciplines. However, at the
end of each chapter we have included a section to point out various devel-
opments of the main equations treated in that chapter. In addition, we
discuss functional equations in abstract domains like semigroups, groups,
or Banach spaces. The innovation of solving functional equations lies in
finding the right tricks for a particular equation. We have tried to be
generous with explanations. Perhaps there will be places where we be-
labor the obvious. Each chapter (except Chapters 5 and 6) ends with a
set of exercises and some of these problems are adapted from Kuczma
(1964), Stamate (1971), and Makarov et al. (1991).

We now give a brief description of the contents. Chapters 1 through
17 deal with a wide variety of functional equations and Chapters 18
through 24 deal with stability of some of the functional equations con-
sidered in the earlier chapters. Chapter 1 gives an account of additive
functions. In this chapter, we treat the additive Cauchy functional equa-
tion and show that continuous or locally integrable additive functions are
linear. We further explore the behavior of discontinuous additive func-
tions and show that they display a very strange behavior: their graphs
are dense in the plane. To this end, we briefly discuss the Hamel basis
and its use for constructing discontinuous additive functions. A discus-
sion of complex additive functions is also provided in this chapter. This
chapter ends with a set of concluding remarks where we point out some
developments and some open problems related to the additive Cauchy
functional equation.

In Chapter 2, the remaining three Cauchy functional equations are
treated. Chapter 3 presents all four Cauchy functional equations in sev-
eral variables. In this chapter, we show that every additive function in
n variables is a sum of n different additive functions in one variable.
Similarly, we show that every multiplicative function in n variables is a
product of n distinct multiplicative functions in one variable. Analogous
results for exponential functions and logarithmic functions of n variables
are also provided in this chapter. Chapter 4 deals with the problem of ex-
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tending the additive Cauchy functional equation from a smaller domain
to a larger domain that contains the smaller domain.

Chapter 5 examines some applications of Cauchy functional equa-
tions. In this chapter, Cauchy functional equations are used for deriv-
ing formulas for the area of a rectangle, laws of logarithm, simple and
compound interest rates, and radioactive disintegration. In this chapter,
using Cauchy functional equations, we characterize the geometric proba-
bility distribution, the discrete normal probability distribution, and the
normal probability distribution.

In Chapter 6, some more applications of Cauchy functional equations
are given. Suppose fy(n) = 1% + 28 4 ... + n* where n is a positive
integer and k is a nonnegative integer. Then fi(n) denotes the sum of
the k*® power of the first n natural numbers. Finding formulas for fi(n)
has interested mathematicians for more than 300 years since the time of
James Bernoulli (1658-1705). In this chapter, using functional equations,
we give formulas for fx(n) for k = 1, 2,3, and for arbitrary k we suggest
a functional relationship for finding a formula. Chapter 6 also contains
formulas for the number of possible pairs among n things, cardinality
of a power set, and sum of certain finite series. These formulas are all
obtained using Cauchy functional equations.

Chapter 7 deals with the Jensen functional equation which arises
from the mid-point convexity condition. In this chapter, we derive the
solution of this equation and show that every continuous Jensen func-
tion is affine. We also give continuous solution of the Jensen functional
equation on a closed and bounded interval. In Chapter 8, pexiderized
versions of the Cauchy functional equations as well as the Jensen func-
tional equation are studied.

In Chapter 9, we study biadditive functions, quadratic functions,
and the quadratic functional equation. First we give the solution of the
quadratic functional equation assuming the unknown function to be con-
tinuous. Then we present the solution without assuming any regularity
condition on the unknown function. Finally, we treat the pexiderized
version of the quadratic functional equation.

Chapter 10 examines the solution of the d’Alembert functional equa-
tion. In this chapter, we show that every continuous nontrivial solu-
tion f: R — R of the d’Alembert functional equation is either f(z) =
cosh(ax) or f(x) = cos(Bz), where o and [ are arbitrary constants.
Furthermore, we show that every nontrivial solution f : R — C of the
d’Alembert functional equation is of the form f(z) = 1[E(z) + E(z)~],
where E : R — C* is an exponential function. Section 4 of this chapter
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presents a characterization of the cosine function by means of a func-
tional equation due to Van Vleck (1910).

In Chapter 11 we continue with the study of functional equations
related to various trigonometric functions. In Section 2 of this chapter we
determine the general solution of a cosine-sine functional equation f(x —
y) = f(x)f(y)+9g(z)g(y). In Section 3, we determine the general solution
of a sine-cosine functional equation f(z +y) = f(z)g9(y) + g(z) f(y). In
Section 4, we present the general solution of a sine functional equation
fx +y)f(x —y) = f(x)?> — f(y)?. Here, we also present the general
solution of the functional f(z+y)g(z—y) = f(z) g(z)—f(y) g(y). Section
5 of this chapter deals with a sine functional inequality. In Section 6, we
present an elementary functional equation due to Butler (2003) and its
solution due to M.Th. Rassias (2004).

Chapter 12 focuses on a functional equation of Pompeiu (1946),
namely f(x +y + zy) = f(z) + f(y) + f(x)f(y). We first present the
general solution of this functional equation and then determine the gen-
eral solution of a generalized Pompeiu functional equation. Chapter 13
deals with the Hosszu functional equation and a generalization of it.
In Chapter 14, first we present the continuous solution of the Davison
functional equation. Then we find the general solution of this functional
equation without any regularity assumption. Chapter 15 examines the
Abel functional equation. In this chapter, the general solution of the Abel
functional equation is determined without any regularity assumption on
the unknown functions.

Chapter 16 deals with some functional equations that arise from
the mean value theorem of differential calculus. Functional equations
of this type were originated by Pompeiu (1930), but the actual study
of this type of functional equations was started by Aczél (1985), Haruki
(1979) and Kuczma (1991b). In this chapter, we study a mean value
type functional equation and several of its generalizations. In Chapter
17, we examine four functional equations, namely, f(pr, gs)+ f(ps, qr) =
(r+8)f(p,q) + (0 + @) f(r,8); f(pr,qs) + f(ps,qr) = f(p,q) f(r,s);
fi(pr,qs) + f2(ps,qr) = g(p,q) + h(r,s); and fi(pr,qs) + fa2(ps,qr) =
(r+s)g9(p,q) + (p+q)h(r, s) that arise in the characterization of distance
measures. In this chapter, we determine the general solution of these
functional equations on open unit interval (0,1). In the last section of
this chapter we point out several functional equations whose solutions
are not presently known.

In 1940 S.M. Ulam (see [142]) posed the following problem: If we
replace a given functional equation by a functional inequality, then under
what conditions can we say that the solutions of the inequality are close
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to the solutions of the equation. For example, given a group (Gq,-), a
metric group (Ga,*) with a metric d(-,-) and a positive number ¢, the
Ulam question is: Does there exist a real number 6 > 0 such that if the
map f : Gy — Gy satisfies d(f(z - y), f(z)x f(y)) < d for all z,y € Gy,
then a homomorphism 7' : G; — G exists with d(f(x),T(x)) < ¢ for
all z,y € G17 The first affirmative answer to this question was given by
D. H. Hyers (1941). Hyers result initiated much of the present research
in the stability theory of functional equations. Chapters 18 through 24
present stability of several functional equations studied in the earlier
chapters.

In Chapter 18, the Hyers-Ulam stability of the additive Cauchy func-
tional equation is treated. In Section 3, a stability result due to Hy-
ers (1941) is presented by considering the Cauchy difference (z,y) —
flx+1y)— f(z) — f(y) to be bounded. In Section 4, Hyers’ theorem is
generalized by allowing the Cauchy difference to be unbounded. In this
section, the contributions of Aoki (1950) and Rassias (1978) are pre-
sented with their proofs. We have also included works of Gajda (1991)
and Rassias and Semrl (1992).

Chapter 19 deals with the Hyers-Ulam stability of the exponential
as well as the multiplicative Cauchy functional equations. The notion
of superstability is introduced in this chapter. Ger type stability of the
exponential and the multiplicative Cauchy functional equations is also
investigated. In Section 4, we point out various developments concerning
the superstability of exponential and multiplicative functional equations.

The stability of the d’Alembert functional equation and the sine func-
tional equations are the main topics of Chapter 20. In Section 2, we
consider the Hyers-Ulam stability of the d’Alembert functional equa-
tion and show that if a function f : R — C satisfies the inequality
[f(x+y)+ fx—y)—2f(x)f(y)] <0 for all z,y € R and for some § > 0,
then either f is bounded or f is a solution of the d’Alembert functional
equation. In Section 3, we treat the stability of sine functional equation,
namely, f(z+y)f(x —y) = f(x)? — f(y)?. In this section, we prove that
any unbounded function f : R — C satisfying the functional inequality
lf(z+y)f(x—y)— f(x)?+ f(y)?| < for all 2,y € R and for some 6§ > 0
has to be a solution of the sine functional equation.

Chapter 21 explores the stability of the quadratic functional equa-
tion. The stability of the pexiderized quadratic functional equation as
well as the Drygas functional equation are also presented. Chapter 22
treats the Hyers-Ulam stability of Davison’s functional equation. Here
the generalized stability of the Davison functional equation is also con-
sidered.
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In Chapter 23, we deal with the stability of the Hosszi functional
equation. We also consider the stability of a generalization of this func-
tional equation. In Chapter 24 the Hyers-Ulam stability of the Abel
functional equation is treated.

This book would not have been possible without the support and en-
couragement from many of our colleagues. In particular the first author
is very thankful to Robert Powers, Thomas Riedel, and Themistocles
M. Rassias for their constant encouragement from the very beginning to
the end. He would also like to thank many of his students who read the
draft copy of this book and made many suggestions for improvements.
The University of Louisville has provided the first author with support
in the form of sabbatical leave while this book was in its early stage
of completion and for this he is very thankful. Perhaps the one person
besides us who is most responsible for this book is the senior editor,
Sunil Nair of Taylor & Francis Group, who encouraged and published
this book. Thanks, Sunil. Our special thanks also go to Judith Simon,
project editor; Sarah Morris, editorial assistant; Jessica Vakili, project
coordinator; Carole Gustafson, proofreader; and Kevin Craig, cover de-
signer at the Taylor & Francis Group for their commitment to excellence
in all aspects of the production of the book. In the book, we have used
results from many researchers and many of our collaborators, and we
have made honest efforts to pay credit to everyone whose results we
have used. If we have missed anyone, we apologize. Finally, this project
was an intellectual pursuit under many constraints, including our busy
teaching schedules and many other scholastic endeavors. So all errata
and suggestions for improvements will be welcomed gratefully by the
authors.

References to the bibliography are made as follows: a work is cited
using the last name of the author and the year of publication shown
between brackets. For instance, Abel (1823) refers to the work of Abel
published in 1823. Two different works of Abel that were published in
the same year 1823 are cited as Abel (1823a) and Abel (1823b) to dif-
ferentiate between them by listing the year as 1823a and 1823b. Thus,
Abel (1823a) refers to the first item whereas Abel (1823b) refers to the
second item in the bibliography listed under Abel for the year 1823.

This book was typeset by the first author in IATEX, a macro package
written by Leslie Lamport for Donald Knuth’s TEX typesetting package.
The bibliography and index were compiled using BibTeX and Makeln-
dex, respectively.

Prasanna Sahoo
Palaniappan Kannappan



Chapter 1

Additive Cauchy Functional
Equation

1.1 Introduction

The study of additive functions dates back to A.M. Legendre who first
attempted to determine the solution of the Cauchy functional equation

flx+y) = f(x)+ fy)

for all 2, y € R. The systematic study of the additive Cauchy functional
equation was initiated by A.L. Cauchy in his book Cours d’Analyse in
1821. Additive functions are the solutions of this additive Cauchy func-
tional equation. This chapter gives an account of additive functions.
First, we explain what a functional equation is. Then we treat the ad-
ditive Cauchy functional equation and show that continuous or locally
integrable additive functions are linear. We further explore the behavior
of nonlinear discontinuous additive functions and show that they display
a very strange behavior: their graphs are dense in the plane. To this end,
we briefly discuss the Hamel basis and its use for constructing discon-
tinuous additive functions. We also examine under what other criteria
the solution of the Cauchy functional equation is linear. A discussion of
complex additive functions is also provided in this chapter. The chapter
ends with a set of concluding remarks where we have pointed out some
developments and some open problems related to the additive Cauchy
functional equation.

Kuczma (1985) gives an excellent exposition on additive functions.
Additive functions have also found places in the books of Aczél (1966,
1987), Aczél and Dhombres (1989) and Smital (1988). The general so-
lutions of many functional equations of two or more variables can be
expressed in terms of additive, multiplicative, logarithmic or exponen-
tial functions. Some of the material in this chapter is adapted from Aczél
(1965) and Wilansky (1967).



2 Introduction to Functional Equations

1.2 Functional Equations

An equation involving an unknown function and one or more of its
derivatives is called a differential equation. Examples of differential equa-
tions are

fl(x)+mz=5

and
" (x)+ f'(x) + sin(z) = 0.

Differential equations are well studied. Equations involving integrals of
an unknown function are called integral equations. Some examples of
integral equations are

fz)=¢"— /73 e“ () dt,

0

F(z) = sin(z) + / [1 — 2 cos(at)] £(1) dt

and "
f@) = [ 1o -1

As with differential equations, there is a well-studied theory of integral
equations.

Functional equations are equations in which the unknowns are func-
tions. Some examples of functional equations are

flz+y) = flx) + fy),

flz+y) = f2)f(y),
flzy) = f(z)f(y),
flzy) = f(z) + f(y),

[l +y) = f(@)g(y) +9(@)f(y),
flz+y)+ flx—y) =2f(z)f(y),
fle+y)+ flz—y) =2f(z) +2f(y),
fla+y)=f@)+ f(y) + f2) f(y),
flx+y)=glzy) + h(z —y),
f@) = fly) = (@ —y)h(z +y),
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f(pr, q8)+f( ,qr) =2f(p,q) +2f(r,s),
(f(x)) = g(x) + 5,
gl(f ( ) =ag(z), a#l

and

f(t) = f2t) + f(2t —1).
The field of functional equations includes differential equations, differ-
ence equations and iterations, and integral equations. In this book we
will not cover these topics. Functional equations is a field of mathematics
which is over 260 years old. More than 5000 papers have been published
in this area.

Functional equations appeared in the literature around the same time
as the modern theory of functions. In 1747 and 1750, d’Alembert pub-
lished three papers that were the first on functional equations (see Aczél
(1966)). Functional equations were studied by d’Alembert (1747), Euler
(1768), Poisson (1804), Cauchy (1821), Abel (1823), Darboux (1875) and
many others. Hilbert (1902) suggested in connection with his 5th prob-
lem, that, while the theory of differential equations provides elegant and
powerful techniques for solving functional equations, the differentiability
assumptions are not inherently required. Motivated by Hilbert’s sugges-
tions many researchers in functional equations have treated various func-
tional equations without any (or with mild) regularity assumptions. This
effort has given rise to the modern theory of functional equations. The
theory of functional equations forms a modern mathematical discipline,
which has developed very rapidly in the last six decades.

To solve a functional equation means to find all functions that sat-
isfy the functional equation. In order to obtain a solution, the functions
must often be restricted to a specific nature (such as analytic, bounded,
continuous, convex, differentiable, measurable or monotonic).

1.3 Solution of Additive Cauchy Functional Equa-
tion
In this section, we introduce the additive Cauchy functional equation

and determine its regular solution.

Let f : R — R, where R is the set of real numbers, be a function
satisfying the functional equation

flz+y) = flz)+ fy) (1.1)
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for all z, y € R. This functional equation is known as the additive Cauchy
functional equation. The functional equation (1.1) was first treated by
A.M. Legendre (1791) and C.F. Gauss (1809) but A.L. Cauchy (1821)
first found its general continuous solution. The equation (1.1) has a
privileged position in mathematics. It is encountered in almost all math-
ematical disciplines.

Definition 1.1. A function f : R — R is said to be an additive function
if it satisfies the additive Cauchy functional equation

fl@+y)=f@)+ fy)
for all x,y € R.

Definition 1.2. A function f: R — R is called a linear function if and
only if it is of the form

flz)=cx (Vz € R),

where ¢ is an arbitrary constant.

The graph of a linear function f(xz) = cz is a non-vertical line that
passes through the origin and hence it is called linear. The linear func-
tions satisfy the Cauchy functional equations. The question arises, are
there any other functions that satisfy the Cauchy functional equation?

We begin by showing that the only continuous solutions of the
Cauchy functional equation are those which are linear. This was the
result proved by Cauchy in 1821.

Theorem 1.1. Let f : R — R be a continuous function satisfying
the additive Cauchy functional equation (1.1). Then f is linear; that
is, f(x) = cx where ¢ is an arbitrary constant.

Proof. First, let us fix  and then integrate both sides of (1.1) with
respect to the variable y to get

f(z) = / f(x)dy
- / Flaty) — Fu)]dy

Ol+fc 1
= / f(u)du — / f(y)dy, where u =1z +y.
T 0

Since f is continuous, by using the Fundamental Theorem of Calculus,
we get

fl@) = fA+2) - f(z). (1.2)
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The additivity of f yields

fA+a)=f(1)+ f(z). (1.3)
Substituting (1.3) into (1.2), we obtain
f'@) =c,

where ¢ = f(1). Solving the above first order differential equation, we
obtain
flz) =cx+d, (1.4)

where d is an arbitrary constant. Letting (1.4) into the functional equa-
tion (1.1), we see that d = 2d and thus d must be zero. Therefore, from
(1.4) we see that f is linear as asserted by the theorem. The proof of the
theorem is now complete. O

Notice that in Theorem 1.1, we use the continuity of f to conclude
that f is also integrable. The integrability of f forced the solution f of
the additive Cauchy equation to be linear. Thus every integrable solution
of the additive Cauchy equation is also linear.

Definition 1.3. A function f: R — R is said to be locally integrable if
and only if it is integrable over every finite interval.

It is known that every locally integrable solution of the additive
Cauchy equation is also linear. We give as a short proof of this using an
argument provided by Shapiro (1973). Assume f is a locally integrable
solution of the additive Cauchy equation. Hence f(z +y) = f(z) + f(y)
holds for all z and y in R. From this and using the local integrability of
f, we get

yf(z) = / " fa)dz
-/ e+ 2) - f(2) de

0

= /xﬂ/ f(u)du — /Oy f(z)dz

T

:/Oxwf(u)du—/Ozf(u)du—/oyf(u)du.

The right side of the above equality is invariant under the interchange
of x and y. Hence it follows that

yf(x) =z f(y)
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for all z,y € R. Therefore, for  # 0, we obtain

flz) _

xT

)

where ¢ is an arbitrary constant. This implies that f(z) = cx for all
x € R\ {0}. Letting x = 0 and y = 0 in (1.1), we get f(0) = 0. Together
with this and the above, we conclude that f is a linear function in R.

Although the proof of Theorem 1.1 is brief and involves only calcu-
lus, this proof is not very instructive. We will present now a different
proof which will help us to understand the behavior of the solution of
the additive Cauchy equation a bit more. We begin with the following
definition.

Definition 1.4. A function f: R — R is said to be rationally homoge-
neous if and only if

flrz) =7 f(x) (1.5)

for all x € R and all rational numbers r.

The following theorem shows that any solution of the additive Cauchy
equation is rationally homogeneous.

Theorem 1.2. Let f : R — R be a solution of the additive Cauchy
equation. Then f is rationally homogeneous. Moreover, f is linear on
the set of rational numbers Q.

Proof. Letting x =0 =y in (1.1) see that f(0) = f(0) 4+ f(0) and hence

£(0) = 0. (1.6)

Substituting y = —z in (1.1) and then using (1.6), we see that f is an
odd function in R, that is

f(=x) = =f(z) (L.7)

for all x € R. Thus, so far, we have shown that a solution of the additive
Cauchy equation is zero at the origin and it is an odd function. Next, we
will show that a solution of the additive Cauchy equation is rationally
homogeneous. For any x,

fQ2z) = fle+) = f(z) + fz) =2 f(2).

Hence

fBz) = f(2x +x) = f(22) + f(2) = 2/ (2) + f(2) = 3 f(2);
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so in general (using induction)

f(nz) =n f(z) (1.8)

for all positive integers n. If n is a negative integer, then —n is a positive
integer and by (1.8) and (1.7), we get

fnz) = f(=(-n)z)
= —f(—nz)
=—(-n) f(z)
=nf(z).

Thus, we have shown f(nz) = n f(x) for all integers n and all z € R.
Next, let r be an arbitrary rational number. Hence, we have

r =

k
‘

where k is an integer and ¢ is a natural number. Further, kz = £(rz).
Using the integer homogeneity of f, we obtain

k f(x) = f(kx) = f(l(rx)) = L f(rz);
that is,
k
flrz) = zf(x) =r f(x).

Thus, f is rationally homogeneous. Further, letting z = 1 in the above
equation and defining ¢ = f(1), we see that

fry=cr

for all rational numbers r € Q. Hence, f is linear on the set of rational
numbers and the proof is now complete. O

Now we present the second proof of Theorem 1.1.

Proof. Let f be a continuous solution of the additive Cauchy equation.
For any real number x there exists a sequence {r,} of rational numbers
with r,, — . Since f satisfies the additive Cauchy equation, by Theorem
1.2, f is linear on the set of rational numbers. That is,

flrn) =cry
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for all n. Now using the continuity of f, we get

f@) = 1 (Jim, 72)
= nlggo f(rn)
= lim cry,

n—oo

=Cx

and the proof is now complete. O

The following theorem is due to Darboux (1875).

Theorem 1.3. Let f be a solution of the additive Cauchy functional
equation (1.1). If f is continuous at a point, then it is continuous every-
where.

Proof. Let f be continuous at ¢ and let x be any arbitrary point. Hence,
we have lin[}5 fly) = f(t). Next, we show that f is continuous at x. Con-
y%

sider

limf(y):;i_rgf(y—x—km—t—kt)

= lim [f(y -2z +t) + f(z - t)]

:lim'f(y—x-l-t)—i—!}i_}rrif(x—t)
)+ flz—1)
f@) + f(z) = f(t)

=f( )-

This proves that f is continuous at x and the arbitrariness of x implies
f is continuous everywhere. The proof is complete. O

The following theorem is obvious from Theorem 1.1 and Theorem
1.3.

Theorem 1.4. Let f be a solution of the additive Cauchy functional
equation (1.1). If f is continuous at a point, then f is linear; that is,
f(z) =cx for all x € R.
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1.4 Discontinuous Solution of Additive Cauchy
Equation

In the previous section, we showed that a continuous solution of the
additive Cauchy equation is linear. In other words continuous additive
functions are linear. Even if we relax the continuity condition to con-
tinuity at a point, still additive functions are linear. For many years
the existence of discontinuous additive functions was an open problem.
Mathematicians could neither prove that every additive function is con-
tinuous nor exhibit an example of a discontinuous additive function. It
was the German mathematician G. Hamel in 1905 who first succeeded
in proving that there exist discontinuous additive functions.

Now we begin our exploration on the non-linear solution of the addi-
tive Cauchy equation. First, we show that the non-linear solution of the
additive Cauchy equation displays a very strange behavior.

Definition 1.5. The graph of a function f : R — R is the set

G={(z,y)|lreR, y=f(z)}.

It is easy to note that the graph G of a function f : R — R is subset of
the plane R2. The proof of our next theorem is similar to one found in
Aczél (1987).

Theorem 1.5. The graph of every non-linear solution f : R — R of the
additive Cauchy equation is everywhere dense in the plane R2.

Proof. The graph G of f is given by

Choose a nonzero x; in R. Since f is a non-linear solution of the additive
Cauchy equation, for any constant m, there exists a nonzero real number

o such that
fl@) |, flz2),
DR 1),
X1 i)
otherwise writing ¢ = @ and letting 21 = x, we will have f(z) = cz
for all z # 0, and since f 60) = 0 this implies that f is linear contrary to
our assumption that f is non-linear. This implies that

T
T

L Jo [+
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so that the vectors vi = (z1, f(z1)) and vo = (z2, f(x2)) are linearly
independent and thus span the whole plane R2. This means that for any
vector v = (z, f(z)) there exist real numbers r; and r3 such that

V =171V]+ToVa.

If we permit only rational numbers pi, ps, then by their appropriate
choice, we can get with p;vy + pove arbitrarily close to any given plane
vector v (since the rational numbers Q are dense in reals R and hence
Q? is dense in R?). Now,

p1v1 + pave = p1(w1, f(21)) + pa(z2, f(22))
= (p1w1 + paz2, prf(w1) + paf(x2))
= (p171 + p2z2, f(p171 + paz2)).

Thus, the set

G ={(z,y) |z = pre1 + paa, y = f(p121 + p22), p1, p2 € Q}
is everywhere dense in R2. Since
GcCQG,

the graph G of our non-linear additive function f is also dense in R2.
The proof of the theorem is now complete. O

The graph of an additive continuous function is a straight line that
passes through the origin. The graph of a non-linear additive function
is dense in the plane. Next, we introduce the concept of Hamel basis to
construct a discontinuous additive function.

Let us consider the set
S={seR|s=u+vV2+wV3, u,v,wecQ}

whose elements are rational linear combination of 1, \/5, V3. Further,
this rational combination is unique. That is, if an element s € S has two
different rational linear combinations, for instance,

s=u+vV2+wV3=u+vV2+uw'V3,

then u = v/, v = v" and w = w’. To prove this we note that this assump-
tion implies that

(u—u)+ (v =02+ (w—w')V3=0.
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Letting a = (u —v'), b = (v — ') and ¢ = (w — w'), we see that the
above expression reduces to

a+0V2+c¢V3=0.
Next, we show that a = 0 = b = c¢. The above expression yields

W2+ V3= —a,

and squaring both sides, we have
2bcvV6 = a® — 2b% — 3¢2.

This implies that b or c is zero; otherwise, we may divide both sides by
2bc and get
a’® — 2b% — 3¢?
6 ——
Ve 2bc

contradicting the fact that /6 is an irrational number. If b = 0, then we
have a + ¢V/3 = 0; this implies that ¢ = 0 (else V3 = f% is a rational
number contrary to the fact that V/3 is an irrational number). Similarly
if ¢ = 0, we obtain that b = 0. Thus both b and ¢ are zero. Hence it
follows immediately that a = 0.

If we call

B:{l,x/i,\/??},

then every element of S is a unique rational linear combination of the
elements of B. This set B is called a Hamel basis for the set S. Formally,
a Hamel basis is defined as follows.

Definition 1.6. Let S be a set of real numbers and let B be a subset
of S. Then B is called a Hamel basis for S if every member of S is a
unique (finite) rational linear combination of B.

If the set S is the set of reals R, then using the axiom of choice it can
be shown that a Hamel basis B for R exists. The proof of this is beyond
the scope of this book.

There is a close connection between additive functions and Hamel
bases. To exhibit an additive function it is sufficient to give its values on
a Hamel basis, and these values can be assigned arbitrarily. This is the
content of the next two theorems.

Theorem 1.6. Let B be a Hamel basis for R. If two additive functions
have the same value at each member of B, then they are equal.
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Proof. Let f; and fy be two additive functions having the same value at
each member of B. Then f; — fo is additive. Let us write f = f1 — fo.
Let = be any real number. Then there are numbers b1, bo, ..., b, in B
and rational numbers 7y, ro, ..., 7, such that

$:T1b1+7"2b2+"'+7"nbn.

Hence
fi(z) = fao(z) = f(2)
= f(ribi +12ba + - - +1r,by)
= f(rib1) + f(rab2) + -+ f(rnby)
=7r1f(b1) +r2f(b2) + -+ rnf(by)
=r1[f1(b1) — f2(b1)] + r2[fi(b2) — f2(b2)]
+ o ralfi(bn) — f2(bn)]
=0.
Thus, we have f; = f5 and the proof is complete. O

Theorem 1.7. Let B be a Hamel basis for R. Let g : B — R be an
arbitrary function defined on B. Then there exists an additive function
f:R — R such that f(b) = g(b) for each b € B.

Proof. For each real number = there can be found by, bo, ..., b, in B and
rational numbers rq, 79, ..., 7, With

T =11b1 +roba + -+ by
We define f(x) to be
r19(b1) +r29(b2) + -+ - + rng(bn).

This defines f(z) for all 2. This definition is unambiguous since for each
x, the choice of by,bs,...,b,, 71,79, ..., T, is unique, except for the order
in which b; and r; are selected. For each b in B, we have f(b) = g(b) by
definition of f. Next, we show that f is additive on the reals. Let  and
y be any two real numbers. Then

T =7T101 + 7202 + -+ Tpan

Yy = 81b1 + 5262 4 - - - + 5 by,

where r1, 72, ..., 7y, S1, 82, ..., Sy, are rational numbers and a4, as, ..., G, b1,
ba, ..., by, are members of the Hamel basis B. The two sets {a1, as, ..., a,}
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and {b1, b, ..., b, } may have some members in common. Let the union
of these two sets be {c1, ¢, ...,¢;}. Then £ < m + n, and

T = U1C1 + uaC + -+ - + upcy

Y = V1C1 + VacCg + - -+ + vecy,

where uq,us, ..., up, V1,02, ...,vp are rational numbers, several of which
may be zero. Now

x4y = (us +vi)er + (ug +v2)eo + -+ + (ug + ve)ce

and

f@+y) = f((ur +vi)er + (ug +v2)ea + -+ -+ (ug +ve)er)
= (u1 +v1) g(er) + (u2 +v2) g(e2) + -+ + (ur + ve) g(ce)
[(u1g(cr) +uag(ca) + -+ ueg(ce) |
+ [(vig(e1) +vag(e2) + -+ - + veg(er) ]
= f(z) + f(y).

Hence f is additive on the set of real numbers R and the proof of the
theorem is now complete. O

With the help of a Hamel basis, next we construct a non-linear ad-
ditive function. Let B be a Hamel basis for the set of real numbers R.
Let b € B be any element of B. Define

-0 gz

By Theorem 1.7, there exists an additive function f : R — R with
f(z) = g(z) for each z € B. Note that this f cannot be linear since for
x € B and x # b, we have

f(z)

X

f(b)

0= =70 # 2

Therefore f is a non-linear additive function.

We end this section with the following remark.

Remark 1.1. No concrete example of a Hamel basis for R is known; we
only know that it exists. The graph of a discontinuous additive function
on R is not easy to draw as the set { f(x) |z € R} is dense in R.
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1.5 Other Criteria for Linearity

We have seen that the graph of a non-linear additive function f is
dense in the plane. That is, every circle contains a point (z,y) such
that y = f(z). We have also seen that an additive function f becomes
linear when one imposes continuity on f. One can weaken this continuity
condition to continuity at a point and still get f to be linear. In this
section, we present some other mild regularity conditions that force an
additive function to be linear.

Theorem 1.8. If a real additive function f is either bounded from one
side or monotonic, then it is linear.

Proof. Suppose f is not linear. Then by Theorem 1.5, the graph of f is
dense in the plane. Since f is bounded from the above, for some constant
M the additive function f satisfies

flz) <M, r €R,

and the graph of f avoids the set A = {(z,y) € R?|y = f(z) > M }.
Therefore it cannot be dense on the plane which is a contradiction. Hence
contrary to our assumption, f is linear. The rest of the theorem can be
established in a similar manner. Now the proof is complete. O

Remark 1.2. Note that since f is bounded on R and f is linear, there-
fore f(x) = 0 for all x € R. To see this, suppose x, is a number such
that f(x,) # 0. By an easy induction, we have f(nxz,) =n f(x,) for all
n € N. We can make |n f(z,)| as large as we please by increasing n,
which would contradict the boundedness of f(x). Therefore f(x) =0 for
all x € R.

In the next theorem we do not assume that f is bounded on R; rather
we assume f is bounded on a closed interval [a, b] for a,b € R.

The proof of the following theorem is based on Young (1958).

Theorem 1.9. If a real additive function f is bounded on an interval
[a,b], then it is linear; that is, there exists a constant ¢ such that f(x) =
cx for all xz € R.

Proof. Suppose f : R — R is an additive function and bounded on an
interval [a, b]. We show first that f(x) is bounded on the interval [0, b—a.
Since f(x) is bounded on [a,b], there exists a positive number M such
that

[fy)l <M
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for all y € [a,b]. If € [0,b — a], then x + a € [a, b], so that from

we obtain
|f(@)] <M+ f(a).

If we call @« = b — a, then f(x) is bounded on [0, a]. Suppose m = @
and let ¢(z) = f(x) — cx. Then ¢ satisfies

px+y)=flx+y)—clz+y)
() + fly) —cx —cy
() —cxz+ f(y) —cy
() + ¢(y),

and we have ¢(a) = f(a) — ca = 0. Tt follows that ¢(z) is periodic of
period «, for

f
f
¢

¢(z + a) = ¢(x) + ¢(a) = ¢(x)

for all x € R. Further, as the difference of two functions bounded on
[0, a], the function ¢(z) is bounded on [0,«]. Since ¢(x) is periodic of
period «, it is bounded on R. Thus ¢(z) is an additive function which
is bounded on R. Hence by previous remark, ¢(z) = 0 for all z € R, or
f(z) = cx. This completes the proof of the theorem. O

Definition 1.7. A function f is said to be multiplicative if and only if
f(zy) = f(x)f(y) for all numbers x and y.

Theorem 1.10. If an additive function f is also multiplicative, then it
is linear.

Proof. For any positive number x,

f@)=f(Va-va)=f (Vo) (Vo) =[f(Va)]* > 0.

Therefore f is bounded from below, and hence by Theorem 1.8, we see
that f is linear. This completes the proof. O

Actually, if f is a nonzero function, then f(z) = z. Indeed, since
f(z) = cx,

cxy = cx cy;

that is, ¢ = ¢. Then f(x) =0 or f(z) =
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Remark 1.3. From what we have studied so far, continuous, monotonic
or measurable solutions f : R — R of the additive Cauchy functional
equation are always of the form f(x) = cx, where ¢ is an arbitrary real
constant. Thus they are analytic. We have also seen that the additive
Cauchy functional equation has non-regular solutions. This is due to the
fact that the general solution of the additive Cauchy functional equation
can be prescribed arbitrarily on a fired Hamel base and can be extended
to R in a unique way. Therefore we have the following alternative: The
solutions of the additive Cauchy functional equation are very regular
(in this case, analytic) or very irreqular (in this case, nowhere contin-
uous, nonmonotonic on any proper interval, nonmeasurable). A similar
alternative can be stated for many functional equations. Typically one
assumes weak regularity properties of the unknown functions (such as
measurability, Baire property, monotonicity, continuity) and using the
functional equation derives higher order regularity properties. Results of
this kind are called regularity theorems for functional equations and Jarai
(2005) provides an excellent account of such results.

1.6 Additive Functions on the Complex Plane

In this section, we present some results concerning additive complex-
valued functions on the complex plane. The formal definition of complex
numbers was given by William Hamilton.

Definition 1.8. The complex number system C is the set of ordered
pairs of real numbers (x,y) with addition and multiplication defined by

(@, 9) + (u, v) = (x+u, y + )
(2, y)(u, v) = (zu—yv, zv +yu)
for all x,y,u,v € R.

Thinking of a real number as either x or (z,0) and letting ¢ denote the
purely imaginary number (0, 1), we can rewrite the following expression

(2. y) = (&, 0) + (0, 1) (3, 0)
(e, y) = = +1iy.

If we denote the left side of the above representation by z, then we have
z = x +1iy. The real number z is called the real part of z and is denoted
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by Re z. Similarly, the real number y is called the imaginary part of z
and is denoted by Im z. If z is a complex number of the form z+iy, then
the complex number = — iy is called the conjugate of z and is denoted
by Z.

An arbitrary function f: C — C can be written as

f(z) = [i(z) + i fa(2), (1.9)
where f; : C — R and f5 : C — R are given by
fis) =Ref(z)  and  fo(x)=Imf(z).  (110)

If f is additive, then by (1.9) and (1.10) we have

fi(z1 + 22) = Re f(z1 + 29)
= Re [ f(21) + f(22)]
= Re f(z1) + Re f(22) = fi(z1) + fi(22),

and

fa(z1 + 22) = Im f (21 + 22)
=1Im [f(z1) + f(22)]
=1Im f(z1) +Im f(22) = fa(21) + fa(22).

Theorem 1.11. If f : C — C is additive, then there exist additive
functions fr; : R — R (k,j =1,2) such that

f(2) = fi1 (Rez) + fio (Im2) +i for (Rez) +1i faz (IM2) .
Proof. By (1.9), we obtain
f(2) = fi(2) +if2(2),

where f; : C — R and fy : C — R are real-valued functions on the
complex plane. Since f is an additive function, f; and fs are also additive
functions. Since the functions f; and fy can be considered as functions
from R? into R, applying Theorem 3.2, we have the asserted result. [J

Our next theorem concerns the form of complex-valued continuous
additive functions on the complex plane.

Theorem 1.12. If f : C — C is a continuous additive function, then
there exist complex constants ¢1 and co such that

f)=cz+ez, (1.11)

where Z denotes the complex conjugate of z.
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Proof. Since f is additive, by Theorem 1.11, we get
f(2) = fi1 (Rez) + fio (Imz) +1 for (Rez) + 1 foo (IMm 2),

where fi; : R — R (k, j = 1,2) are real-valued additive functions on the
reals. The continuity of f implies the continuity of each function f; and
hence

frj(z) = cijz,

where cg; (k,j = 1,2) are real constants. Thus, using the form of f(z)
and the form of fj;, we get

f(z)=ci1 Rez+ciaImz +icoyRez +icoalmz
= (611 +i021 )R€Z+ (012 +’i022 )Imz

=aRez+bImz where a = cy1 +ica1, b= c1a + icoo
=aRez—1i(bi)Imz
bi — bi bi — bi
:a—; ZRez—i—a ZRez—a—’— Zi[mz—f—a ZiImz
— bi — bi bi bi
S 5 ZRez—i-a ZiImz+a+ ZRez—CH_ ZiImz
a—bi a—+ b

=— (Rez+ilmz)+ (Rez—iImz)

a—bi a+bi _
Z

= z 4+
2 2
=c1z2+c2z,
where ¢; = 2% and ¢y = %bi are complex constants. This completes
the proof of the theorem. O

Note that unlike the real-valued continuous additive functions on
the reals, the complex-valued continuous additive functions on the com-
plex plane are not linear. The linearity can be restored if one assumes
a stronger regularity condition such as analyticity or differentiability
instead of continuity.

Definition 1.9. A function f : C — C is said to be analytic if and only
if [ is differentiable on C.

Theorem 1.13. If f : C — C is an analytic additive function, then
there exists complex constant ¢ such that

f(z) =cz;

that is, f is linear.
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Proof. Since f is analytic, it is differentiable. Differentiating

f(z1+ 22) = f(21) + f(22) (1.12)

with respect to z;, we get
21+ 22) = f(21)
for all z; and zo in C. Hence, letting z; = 0 and 25 = z, we get
f'(z)=c,
where ¢ = f/(0) is a complex constant. From the above, we see that
F(2) = ez +b,

where b is a complex constant. Inserting this form of f(z) into (1.12),
we obtain b = 0 and hence the asserted solution follows. This completes
the proof of the theorem. O

We close this section with the following remark.

Remark 1.4. [t is surprising that Theorem 1.10 fails for complex-valued
functions on the complex plane. It is well known that there is a discontin-
uous automorphism of the complex plane (see Kamke (1927)). An auto-
morphism is a map that is one-to-one, onto, additive and multiplicative
on C.

1.7 Concluding Remarks

Cauchy (1821) proved that every continuous additive function f :
R — R is linear, that is, of the form f(z) = mx, where m is an arbitrary
constant. Darboux (1875) showed that a real additive function which
is continuous at a point is linear. It is also known that every locally
integrable real additive function is linear. Young (1958) demonstrated
that if a real additive function is bounded on a closed interval, then
it is linear. The proof of these results we have seen in this chapter.
Banach (1920) and also Sirerpiriski (1920) proved that every Lebesgue
measurable additive function is also linear. Ostrowski (1929) and again
Kestelman (1948) showed that if a real additive function is bounded from
above or below on a set of positive measure, then it is linear. Answering
a question of Erdos (1960), Jurkat (1965) proved that if f(z) is a real
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valued function defined for almost all real = and f satisfies f(z + y) =
f(z) + f(y) for almost all pairs (x,y) in the senses of plane (Lebesgue)
measure, then there exists a real valued function F'(x) which coincides
with f(z) for almost all  in the sense of linear (Lebesgue) measure.
From this result one can show that if f satisfies f(x 4+ y) = f(z) + f(y)
for almost all pairs (z,y) and is also measurable or only bounded from
below on a set of positive measure, then f(x) = m« for almost all z in R.
The above mentioned Erdds problem was also solved by de Bruijn (1967).
I. Halperin asked about finding all additive real functions f which are of
the form f(z~!) = 72 f(x) for all nonzero reals. Jurkat (1965) proved
that every real additive function f(x) that satisfies f(z~%) = 272 f(x)
for all © € R\ {0} is linear.

For many years the existence of discontinuous additive functions was
an open problem. Mathematicians could neither prove that every addi-
tive function is continuous nor exhibit an example of a discontinuous
additive function. It was the German mathematician G. Hamel in 1905
who first succeeded in proving that there exist discontinuous additive
functions. Hamel (1905) proved that if f(x) is an additive function not
of the form f(z) = mx, then the graph of f has a point in every neigh-
borhood of every point in the plane R2. The proof of Hamel uses the
axiom of choice. Hewitt and Zuckerman (1969) gave a simple proof of this
result avoiding the axiom of choice. Hamel constructed a discontinuous
additive function using a Hamel basis for R. Jones (1942) demonstrated
the existence of a discontinuous additive function whose graph is con-
nected in the topological sense.

The additive Cauchy functional equation f(xz + y) = f(x) + f(y)
has a natural generalization: f(xz + y) = F(f(x), f(y)) where F(u,v)
is a known function. Aczél has proved that f(xz +y) = F(f(z), f(y))
has a continuous and strictly monotonic solution if and only if the
function F'(x,y) is continuous and strictly monotonic with respect to
each variable and satisfies the condition F(F(x,y),z) = F(x, F(y, z))
(see Aczél (1966)). The above equation can be furthered generalized to
flax + by + ¢) = F(f(x), f(y)), where F(u,v) is a known function and
a, b, ¢ are real constants such that ab # 0.

We conclude this section by giving an example of a simple looking
functional equations whose general solution is not known. This and some
additional problems were posed in Sahoo (1995). The first problem is
the following: Find all functions f : (0,1) — R satisfying the functional
equation

fly) + fx(1 —y) + fly(1 —2)) + (1 -2)(1-y)) =0 (1.13)

for all z,y € (0,1). This problem was stated as an open problem
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in Ebanks, Sahoo and Sander (1990). It should be noted that if
f(z) = 4A(z) — A(1), where A is an additive function on the reals, then
it satisfies the functional equation (1.13). If f is assumed to be contin-
uous (or measurable), then Daréczy and Jarai (1979) have shown that
f(z) = 4ax—a, where a is an arbitrary constant. Recently, Maksa (1993)
posed the following problem at the Thirtieth International Symposium
on Functional Equations: Find all functions f : [0,1] — R satisfying the
functional equation

(1—z—y)fley) =2f(y(1 —2)) +yf(x(l —y)) (1.14)

for all z,y € [0,1]. One can easily show that if f is a solution of (1.14),
then f is skew symmetric about 3, that is, f(z) = —f(1 — z), and
f(0) = 0. Further, it is easy to note that Maksa’s equation (1.14) implies
equation (1.13). To see this, replace x by 1 — x in (1.14) and add the

resulting equation to (1.14) to obtain

y [flay) + f@(l—y) + fy(Q —2) + (A —2)(1-y))] =0

for all z,y € (0,1]. Since f(0) = 0, the above equation yields (1.13) for all
x,y € [0,1]. Thus, the general solution of (1.13) will provide the general
solution of (1.14). Utilizing the solution of the equation (1.13) given by
Daréczy and Jarai (1979), it is easy to show that if f is continuous (or

measurable or almost open), then all solutions of (1.14) are of the form
f(z) =0 for all z € R.

Now at the first sight the above functional equations, (1.13) seems
harmless — it looks as though anyone could solve it, but nobody has
succeeded in finding all solutions of this equation.

1.8 Exercises

1. Show that any monotonic function f : R — R satisfies the additive
Cauchy functional equation if and only if f(z) = cx for every z € R,
where ¢ is a non-zero real constant.

2. If f : R — R is a solution of the additive Cauchy functional equation,
then show that f is either everywhere or nowhere zero.

3. Determine all twice differentiable solutions f : (0,1) — R of the
fundamental equation of information

sa-o+-or (£5) = ra-p+a-nf (1)

1—2 1—y
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for all z,y € (0,1).

4. Determine all differentiable solutions f : R — R of the functional
equation

fle+y—mzy) + flzy) = f2) + f(y)
for all x,y € R.

5. Using induction, determine all functions f : Q — Q that satisfy the
functional equation

flay) + fle+y) = f@) fy) +1  Vo,yeQ

6. Determine all functions f : R — R that satisfy the functional equation

flx+y)+ f(2) = f(z)+ fly+2)

for all z,y,z € R.

7. Determine all functions f : R — R that satisfy the functional equation

fle+y) =fx)+ fly) +ay

for all z,y € R.

8. Let f : R — R be a solution of the additive Cauchy functional equa-
tion such that f(R) = R. Prove that f either is one-to-one or has the
intermediate value property.

9. Let f : R — R be a solution of the additive Cauchy functional equa-
tion which is not one-to-one. Prove that for every y € f(R), the set

f~1(y) is dense in R.

10. Determine all functions f : R — R that satisfy the Lobacevskii
functional equation

flx+y) fx—y) = f(z)? Vz,y€R.

11. By reducing the functional equation

(T <) vepew

to the additive Cauchy functional equation, find its general continuous
solution.
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12. Let Rg = R ~ {0}. Suppose f and g # 0 are two solutions of the
additive Cauchy functional equation. Suppose there exists n € Z with
n # 0,—1 and a continuous function 3 : Ry — R such that

g(z) = () f (27")

for all z € Rg. Then prove that ¢(x) = c2™!, where ¢ is a real constant.

13. Let f : R — R be a solution of the additive Cauchy functional
equation satisfying the condition

f(x) =2%f(1/x) Vo e R~ {0}
Then show that f(z) = cz, where ¢ is an arbitrary constant.

14. Let n € N (the set of natural numbers) with n > 1. Determine all
functions f : R — R that satisfy the functional equation

flx+y") = fl@)+ f(y)"

for all z,y € R.

15. Let v and a be real numbers with ¢ > 0. Find all functions that
satisfy the functional equation

fle+y) = fl@)+ fly) +a(l —a®)(1-a’)

for all z,y € R.

16. Determine all functions f : R — R that satisfy the functional equa-
tion
flaz+by+c)=af(z)+Bf(y)+v Va,yeR,

where a, b, ¢, «, 3,7 are apriori chosen real numbers satisfying aba3 # 0.

17. Let f : R — R be a solution of the functional equation

[f@+y)l=1f@[+[f)]  Va,yeR

Then show that f is an additive function; that is, f satisfies the additive
Cauchy functional equation.






Chapter 2

Remaining Cauchy Functional
Equations

2.1 Introduction

In Chapter 5 of his book Cours d’Analyse, A. L. Cauchy (1821) also
studied three other functional equations, namely,

fl@+y) = f)fy), (2.1)
flzy) = f(z) + fy) (22)
and
flzy) = f(2)f(y) (2.3)
besides the additive Cauchy functional equation
fle+y)=flz)+ f(y) (24)

for all z,y € R. This chapter is devoted to solving these three Cauchy
functional equations. The general solution of each of these functional
equations is determined in terms of the additive function. Finally, using
the general solution, the continuous solution is provided for each of these
functional equations.

2.2  Solution of the Exponential Cauchy Equation

In this section, we determine the general solution of the exponential
Cauchy functional equation (2.1) without assuming any regularity condi-
tion such as continuity, boundedness or differentiability on the unknown
function f.

25
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Theorem 2.1. If the functional equation (2.1), that is,

fx+y) = f(2)f(y),

holds for all real numbers x and y, then the general solution of (2.1) is
given by
f(@)=e*® and f(z)=0 VzeR, (2.5)

where A : R — R is an additive function and e is the Napierian base of
logarithm.

Proof. Tt is easy to see that f(x) =0 for all x € R is a solution of (2.1).
Hence from now on we suppose that f(x) is not identically zero. We
claim that f(x) is nowhere zero. Suppose not. Then there exists a y,
such that f(y,) = 0. From (2.1), we get

f(y):f((y_yo)+yo)
:f(y_yo)f(yo)zo

for all y € R. This is a contradiction to our assumption that f(x) is not
identically zero. Hence f(z) is nowhere zero.

Letting 2 = & = y in (2.1), we see that

for all ¢ € R. Hence f(x) is a strictly positive. Now taking natural
logarithm of both sides of (2.1), we obtain

In f(z +y) =In f(z) +In f(y).
Defining A : R — R by A(x) = In f(z), we have
Az +y) = A(z) + A(y). (2.6)

Hence we have the asserted solution f(z) = eA(®) and the proof is now
complete. O

The following corollary is obvious from the above theorem.

Corollary 2.1. If the functional equation (2.1), that is, f(x +y) =
f(x)f(y), holds for all real numbers x and y, then the general continuous
solution of (2.1) is given by

fl@)=¢€°" and f(zx)=0 VzeR, (2.7)

where ¢ is an arbitrary real constant.
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The following definition will be useful in later chapters.

Definition 2.1. A function f : R — R is called a (real-valued) real
exponential function if it satisfies f(x +y) = f(x) f(y) for all x,y € R.

Let n be a positive integer. Suppose the functional equation

flx+y+nxy) = f(x) f(y) (2.8)

holds for all reals > —%L and all y > —%. When n — 0, the functional
equation (2.8) reduces to the exponential Cauchy functional equation.
This equation was studied by Thielman (1949).

Theorem 2.2. Fuvery solution f of the functional equation (2.8) holding
for all reals x > f% and all y > —% is of the form

f@)=0  or  f(z)=eA0Enm), (2.9)
where A : R — R is an additive function.

Proof. We write the functional equation (2.8) as

I <(1 + nx)(zﬁ— ny) —1

>ﬂ@ﬂw- (2.10)

Next we define 1+ nx = e* and 1+ ny = e¥ so that u = In(1 4+ nx) and
v = In(1 + ny). Now rewriting (2.10), we obtain

() ) e

for all u,v € R. Letting

o(u) = f <eu — 1) (2.12)

in (2.11), we have
P(u+v) = ¢(u) p(v) (2.13)

for all u,v € R. Hence by Theorem 2.1, we have
p(z) =A@ or P(z)=0 VzeR, (2.14)

where A : R — R is an additive function and e is the Napierian base of
logarithm. Therefore from (2.12) and (2.14), we obtain

f(l‘) =0 or f(SC) — eA(ln(l-t,-nx) ),

where A : R — R is an additive function. The proof of the theorem is
now complete. O
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The following corollary is obvious.

Corollary 2.2. Every continuous solution f of the functional equation
(2.8) holding for all reals x > —% and all y > —L is of the form

f(x)=0 or f(z) = (14 nx)*, (2.15)

where k is an arbitrary constant.

2.3 Solution of the Logarithmic Cauchy Equation

Now we consider the second Cauchy functional equation (2.2). This
functional equation is known as the logarithmic Cauchy equation.

Theorem 2.3. If the functional equation (2.2), that is,
flzy) = f(2) + f(y),
holds for all x,y € R\ {0}, then the general solution of (2.2) is given by
f(z) = A(ln|z|) Vz e R\ {0}, (2.16)
where A is an additive function.
Proof. First we substitute x =t and y = ¢ in (2.2) to get
F(&2) = 2f(2).
Similarly, letting x = —t and y = —t in (2.2), we have
f(#2) =2f(-1).
Hence we see that
f@) = f(=t) VvteR\{0}. (2.17)

Next, suppose the functional equation (2.2) holds for all > 0 and
y > 0. Let
r=e° and y=cé (2.18)

so that
s=lnz and t=Iny. (2.19)
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Note that s,¢ € R since z,y € Ry where Ry = {z € R|z > 0}. Substi-
tuting (2.18) into (2.2), we obtain

Feth) = f(e”) + f(e").
Defining
Als) = f(e*) (2.20)
and using the last equation we have
A(s+1t) = A(s) + A(t)
for all s,¢ € R. Hence from (2.20) we have
f(z)=A(nz) Ve e Ry. (2.21)
Since f(t) = f(—t), we see that the general solution of (2.2) is
fz) = A(nja]) Vo eR\ {0}
and the proof is now complete. O
The following corollaries are consequences of the last theorem.

Corollary 2.3. The general solution of the functional equation (2.2),
that is, f(xy) = f(x) + f(y), holding for all x,y € Ry is given by

f(z) = A(lnz), (2.22)
where A : R — R is an additive function.
The following result is also trivial.

Corollary 2.4. The general solution of the functional equation (2.2)
holding for all x,y € R is given by

fz)=0 VzeR (2.23)

Proof. Substitute y = 0 in (2.2) to get f(0) = f(z) + f(0) and hence we
have the asserted solution. O

Corollary 2.5. The general continuous solution of the functional equa-
tion (2.2), that is, f(zy) = f(x) + f(y), holding for all x,y € R\ {0} is
given by

f(x)=cln|z| vz € R\ {0}, (2.24)
where ¢ is an arbitrary real constant.

Definition 2.2. A function f : Ry — R is called a logarithmic function
if it satisfies f(xy) = f(x) + f(y) for all z,y € Ry.
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2.4 Solution of the Multiplicative Cauchy Equation

Now we treat the last Cauchy equation (2.3). This equation is the
most complicated of the three equations considered in this chapter. In
the following theorem we need the notion of the signum function. The
signum function is denoted by sgn (z) and defined as

ifzx>0
sgn(z)=4¢ 0 ifz=0 (2.25)
-1 ifz<O.

Theorem 2.4. The general solution of the multiplicative functional
equation (2.3), that is,

flazy) = f(x)f(y),
holding for all z,y € R is given by

f(x) =0, (2.26)
flz) =1, (2.27)
fla) = A D sgn(a)], (2.28)
and
f(z) = A=) sgn(z), (2.29)

where A : R — R is an additive function and e is the Napierian base of
logarithm.

Proof. Letting x = 0 = y in (2.3), we obtain f(0)[1 — f(0)] = 0 and
hence either

FO)=0 or  f(0)=1. (2.30)
Similarly, substituting z = 1 = y in (2.3), we have f(1)[1 — f(1)] =0
and hence either

f()y=o0 or f(1)y=1. (2.31)
Let  be a positive real number, that is > 0. Then (2.3) implies
fl@) = f(Va)? > 0. (2.32)

Suppose there exists an zp € R, xg # 0 such that f(z¢) = 0. Let z € R
be an arbitrary real number. Then from (2.3) we have

fla)=f (xojo) = f(xo) f (jo) =0

for all x € R and we obtain the solution (2.26).
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From now on we suppose that f(z) # 0 for all z € R\ {0}.

From (2.30) we have either f(0) = 0 or f(0) = 1. If f(0) = 1, then
letting y = 0 in (2.3), we obtain

and hence
flx)=1.
for all # € R. Thus we have the asserted solution (2.27).

Next we consider the case f(0) = 0. In this case we claim that f is
nowhere zero in R\ {0}. Suppose not. Then there exists a y, in R\ {0}
such that f(y,) = 0. Letting y = y, in (2.3), we have

f(xyo) = f(2)f(yo) = 0.

Hence

flz)=0 VzeR\{0}

which is a contradiction to our assumption that f is not identically zero.
Thus f is nowhere zero in R\ {0}.

From the fact that f is nowhere zero in R\ {0} and (2.32), we have

f(z)>0 for x> 0. (2.33)
Let
x=¢e’ and y=cé (2.34)
so that
s=Inz and t=Iny. (2.35)

Note that s,t € R since z,y € R,. Substituting (2.34) into (2.3), we
obtain

fle™) = f(e”) f(eh).

Since f(¢) > 0 for all ¢ > 0, taking the natural logarithm of both sides
of the last equation, we have

A(s +1) = A(s) + A(t),

where
A(s) =In f(e®) VseR. (2.36)

Thus A is an additive function. From (2.36)and (2.35), we obtain

f(z) =eAl2D) vy e R,. (2.37)
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From (2.31) we see that either f(1) = 0 or f(1) = 1. If f(1) = 0,
then letting y = 1 in (2.3), we obtain

fl)=0 Ve eR\ {0}
contrary to our assumption that f is not identically zero on R\ {0}.

Hence f(1) = 1. Now letting * = —1 =y in (2.3), we get f(1) = f(—1)?
and hence

fF-) =1 or  f(-1)=-L (2.38)
If f(—1) =1, then letting y = —1 in (2.3), we have

for all x € R\ {0}. Thus (2.37) yields
f(il?) — eA(ln\J;|)

for all x € R\ {0}. Since f(0) =0, we have

_ JeAUnlzhif z e R\ {0}
f(x)_{o ifr=0

which is the asserted solution (2.28).

If f(—=1) = —1, then letting y = —1 in (2.3), we have

for all z € R\ {0}. Hence (2.37) yields

@) = eAnlzl) if 7 > 0
] —eAlnlzh) i g <0

for all z € R\ {0}. Together with the fact that f(0) = 0, we have

eAlnlz) if 25
flz) = 0 ifxz=0
—eAlnfz) it 0

which is the asserted solution (2.29). Now the proof of the theorem is
complete. O

By virtue of the above theorem we have the following corollary.
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Corollary 2.6. The general continuous solution of the functional equa-
tion (2.3), that is, f(xy) = f(x)f(y), holding for all x,y € R is given

by

f(z) =0, (2.39)
flx) =1, (2.40)
flx) ==, (2.41)
and
f(x) = [z]* sgn(), (2.42)

where a is an arbitrary positive real constant.

Proof. By Theorem 2.4 either f =0, or f =1, or f has the form (2.28)
or (2.29), where A : R — R is an additive function. Since f is continuous
and

A(t) = In f(e"),

A is also continuous on R. Therefore
At) = act,

where a € R is an arbitrary constant. Hence from (2.28) and (2.29), we
get
flx) = |z|*
and
f(z) = || sgn (x),

respectively. The only thing remaining to be shown is @ > 0. If we had
a = 0, then (2.41) will yield f(z) = 1 for  # 0, and by continuity of
f we must have f(0) = 1. Hence we will have f = 1, already listed in
(2.40). Formula (2.42) with o = 0 yields

flx)=1 for x>0

and
flx)=-1 for <0

and thus f cannot be continuous. Similarly if @ < 0, then f given by
(2.41) and (2.42) satisfies

lim f(z) =0

r—0t

and hence cannot be continuous at 0. Now the proof of the corollary is
complete. O

Definition 2.3. A function f : R — R is called a multiplicative function
if it satisfies f(xy) = f(x) f(y) for all x,y € R.
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2.5 Concluding Remarks

In Chapter 1, we proved that if f : C — C is a continuous additive
function, then there exist complex constants ¢; and co such that

fR)=az+cecz

where Z denotes the complex conjugate of z. Note that unlike the real-
valued continuous additive functions on the reals, the complex-valued
continuous additive functions on the complex plane are not linear. The
linearity can be restored if one assumes a stronger regularity condition
such as analyticity or differentiability instead of continuity. Abel (1826)
investigated the exponential functional equation f(z+y) = f(x)f(y) for
complex function f of complex variable to prove the Newton’s binomial

series, namely
> (1) =aear

k=0
(see Aczél (1989)).

The real-valued continuous nontrivial exponential function on R is
always of the form f(x) = e**, where k is an arbitrary constant. The
continuous nontrivial complex solution of the exponential functional
equation is of the form f(z) = e“1*1t¢2% where c;, ¢z are complex con-
stants. A real-valued rational exponential function f is always of the
form f(z) = e*®, where k = In f(1). However, even on the set of rational
numbers, Q, the complex-valued exponential function is not of the form
f(x) = . Dharmadhikari (1965) proved that every nontrivial solution
f :Q — C of the exponential Cauchy functional equation is of the form

f(.l?) — ekx+2ﬂ'ima(n) (243)

for every rational x = ™, where a(n) € Z and satisfies 0 < a(n) < n for
n > 2 and n divides a(kn) — a(n) for all k and n in Z..

Let (G,®) and (H,®) be two arbitrary groups and let f : G — H
be a mapping from the group G into group H. Then the four Cauchy
functional equations can be expressed as f(z @ y) = f(z) ® f(y) for all
x,y € G. The function f : G — H satisfying the above equation is called
a homomorphism from group G into group H.

Let G, = {a; ER|z > f%, n > O} and @ be a binary operation
in G, defined as ¢ @y =  + y + nay. Then (G,,d) is a subgroup of
group (G,®), where G = {z € R|z # —1}. Nath and Madaan (1976)
have studied functional equations of the type f(z ® y) = g(z) h(y) for
all z,y € (G, D).
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We close this section with a brief discussion on the following recent
developments about the logarithmic Cauchy functional equation

f(zy) = f(z) + fly) Va,y e (0,00).

In 1999, Heuvers studied the functional equation

1 1
fat) = f) - f) = £ (5 +7) (2.44)
for all x,y € (0,00) and showed that this functional equation (2.44) is
equivalent to the logarithmic Cauchy functional equation. Heuvers and
Kannappan (2005) found another functional equation

1 1
fatn) = e =1 (5+1) (2.45)
for all z,y € (0,00) and proved that it is also equivalent to the loga-
rithmic Cauchy functional equation. The Pexider generalization of the
functional equation (2.45) is the following:
1 1
faty)—gan=n(141) vaye o). a0

where f,g,h : (0,00) — R are real-valued functions on the set of positive
reals. They proved the following theorem.

Theorem 2.5. The general solution of (2.46) is given by
f(z) = L(x) +a, g(z)=L(z) +b, h(z)=L(z)+a=-b,

where L : (0,00) — R is a logarithmic function and a,b are arbitrary
real constants.

The Pexider generalization of the functional equation (2.44) is the
functional equation

1 1
fatn) =) =) =k (47), VayeOoo), (247
where f,g,h,k: (0,00) — R are real-valued functions on the set of pos-
itive reals. Heuvers and Kannappan (2005) determined the twice differ-
entiable solution of the functional equation (2.47). A particular solution
of (2.47) is the following:

f(z) = L(z) + A(z) + c1,

g(z) = L(z) + A(z) — A1(1/z) + c1 + c3,
h(z) = L(z) + A(z) — A1(1/x) — c2 — c3,
k(z) = L(z) + A1(x) + co,



36 Introduction to Functional Equations

where L : (0,00) — R is a logarithmic function, A, A; : R — R are
additive functions, and cq, co, c3 are arbitrary real constants. The most
general solution of (2.47) without any regularity assumption on the un-
known functions f, g, h, k is an open problem.

2.6 Exercises

1. Find all continuous functions f : R — R that satisfy the functional
equation

flzy) =y f(x) + 2 f(y)
for all a,y € R~ {0}.

2. If f: R — R is a solution of the exponential Cauchy functional
equation

flx+y)=f(2) fly) Vz,yeR,

then show that f is either everywhere or nowhere zero.

3. Determine all functions f : R — R that satisfy the functional equation

flx+y)=f@)+ fly) + A \f(2)f(y) VYz,yeR,
where ) is a real constant.

4. Determine all functions f : R — R that satisfy the functional equation

flet+y)=a™ f2) fly) Vz,yeR,
where a is a positive real constant.

5. Determine all functions f : R — R that satisfy the functional equation
fWa?+y?) = f(x) fly)  Va,yeR
6. Determine all functions f : R — R that satisfy the functional equation

f(Wa2+2) = f(z)+ fly)  VYa,yeR

7. Find all continuous solutions f : C — C of the complex exponential
functional equation

flz+w) = f(z) + f(w) Vz,w e C.
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8. Find all functions f : R — R that satisfy the functional equation

[f(@) + f(W)] Lf(w) + f(0)] = fzu —yv) + f(zv + yu)

for all z,y,u,v € R.

9. Determine all functions f : R — R that satisfy the two functional
equations

fle+y)=flx)+ fly) and [f(zy) = f(z) f(y)
for all z,y € R.

10. Find all functions f : R — R that satisfy the functional equation

fl@+y) + (@) fy) = flay) + f(z) + fy)
for all z,y € R.

11. Find all functions f,g : R — R that satisfy the functional equation

flxz+y) = f(x)gly) + f(y)

for all z,y € R.

12. Determine all functions f : R — R that satisfy the functional equa-
tion
fle+y+Aey) =flz) fly) Vaz,yeR,

where )\ is a real constant.

13. Determine all entire functions f : C — C that satisfy the functional
equation

|f(s+it)] =[f(s) f(it)]
for all s,t € R.

14. Determine all entire functions f : C — C that satisfy the functional
equation

|[f(s+it) f(s —it)| = |f(s)?|
for all s, € R.

15. Let «, 8 be nonzero a priori chosen real numbers. Find all functions
fy9,h:(0,1) — R that satisfy the functional equation

flzy) = 2%g(y) + ¥ ()

for all z,y € (0,1).
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16. Find all functions f : (0, 00) — R that satisfy the Heuvers functional
equation

fl+y)=f@)+ @)+ +y)
for all z,y € (0, 00).
17. Find all functions f : (0,00) — R that satisfy the functional equation
fla+y) = f(@) fly) fla +y7")
for all z,y € (0,00).
18. Find all functions f : R — R that satisfy the functional equation
fl@+y) + f(@) fy) = fay) + f(z) + fy)

for all x,y € R.
19. Find all functions f : [0, 00) — R that satisfy the functional equation

(@ +9°) = f (22 = %) + f(2zy)
for all z,y € [0, 00).

20. Find all functions f : R — R that satisfy the functional equation

F(V& T2 +1) = f(@)+ ()

for all x,y € R.
21. Find all functions f : R — R that satisfy the functional equation

flz+zy) = f(z) + f() f(y)

for all z,y € R.



Chapter 3

Cauchy Equations in Several
Variables

3.1 Introduction

In this chapter, we will show that a real-valued additive function on
R™ can be expressed as a sum of n additive functions of one variable. A
similar result holds for real-valued logarithmic function on R™ with some
appropriate restrictions on the domain. Further, it will be shown that a
real-valued multiplicative function on R™ can be expressed as a product
of n multiplicative functions of one variable. A similar result also holds
for exponential function on R™.

3.2 Additive Cauchy Equations in Several Variables

The Cauchy functional equation

f($+y)=f($)+f(y), for z,y €R, (CE)

can be generalized to

f(x1+y1,x2+y2,...,xn+yn) :f($1a3527~~~7$n)+f(y1,y27«-~>yn)

for (z1,x9,...,2,) € R™ and (y1,y2,...,yn) € R™. Here f : R" — R. We
want to find the general solution of this functional equation. To make the
problem easy to understand we take n = 2. Thus our equation reduces
to

fl1 +y1, 22 +y2) = (21, 22) + f(y1,92) (FE)

for all x1,z2,y1,y2 € R.
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Theorem 3.1. The general solution f : R? — R of the functional equa-
tion (FE) is given by
f(@1,@2) = Ar(z1) + Az(22), (3.1)
where A1, As : R — R are additive.
Proof. Letting x2 = y» = 0 in (FE), we have
f(xl +y170):f($170)+f(y170) (32)
Define A; : R — R by
Ay () = f(=,0). (33)
Then by (3.3), (3.2) reduces to
Ai(z1 +y1) = Ar(z1) + Ar(y1).

Hence A; : R — R is an additive function.
Similarly letting 1 = y; = 0 in (FE), we get
f(0,22 +y2) = f(0,22) + f(0, y2).
Defining A5 : R — R by
Ay (z) = f(0,x) (3-4)

we get
Az (2 + y2) = Az(x2) + A2(y2).

Therefore A5 : R — R is an additive function. Next we substitute in
(FE)

y1 =0=x
to obtain
f(‘rlay2> = f(xlvo) + f(oayQ)
= A1(21) + A2(y2)-
Therefore

f(1'7y) :Al(x)+A2(y)7 for xayeRa

where A;, As : R — R are additive functions on R. The proof is now
complete. O

This theorem says that any additive function of two variables on R?
can be decomposed as the sum of two additive functions in one variable.
That is

f(z,y) = Ar(z) + Az (),
where f : R2 = R, and 4,45 : R — R.

Theorem 3.1 can also be rephrased as the following theorem.
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Theorem 3.2. If f : R? — R is additive on the plane R2, then there
exist additive functions A1, As : R — R such that

f(z1,22) = Ar(21) + Az(22) (3.5)
for all 1,29 € R.
The following theorem follows from Theorem 3.2 and Theorem 1.1.

Theorem 3.3. If f : RZ — R is a continuous additive function on the
plane R?, then there exist constants ci, co such that

f(z1,m2) =c1a1 4+ cawy (3.6)
for all x1, x5 € R.

This result can be furthered strengthen by weakening the continuity
of f:R? = R.

Lemma 3.1. If an additive function f : R?2 — R is continuous with
respect to each variable, then it is continuous.

Proof. Since the function f : R? — R is additive, by Theorem 3.2, we
have

fx,y) = Ar(z) + As(y)

for all x, y € R. Since f is continuous with respect to each variable, we
see that A; and Ay are continuous. Hence

lim A;(z) = Ai(z,) and lim As(y) = Aa(yo).

T—To Y—Yo

In order to show f is continuous, we compute

lim T,y) = lim Aj(z)+ A
e T OV = i, A+ AW
= lim A(z)+ lim As(y)
T—To Y—Yo
= Al(xo) + AQ(yo) = f(xoayo)~
This shows that f is continuous. Now this proof is complete. O

Theorem 3.4. If f : RZ — R is an additive function on the plane R?
and continuous in each variable, then there exist constants cy, co such
that

f(x1,20) = c1 1 + ca 20 (3.7)
for all z1,x9 € R.

Proof. The proof follows from Theorem 3.3 and Lemma 3.1. O
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Theorem 3.1 is also true for general n. That is if f : R™ — R satisfies

fxi+y,ze+y2, o0 +yn) = f(21, 22,0, 00) + f(Y1, 92, Yn)
for all (z1,22,...,2n), (y1,Y2,---,Yn) in R then

f(1?1,132, NN ,JL‘n) = ZAk(l‘k),

where Ay : R = R (k= 1,2,...,n) are additive functions.

The proof of Theorem 3.1 depends primarily on the number 0. Hence,
following Kuczma (1973), we give an alternative proof without the use
of the number 0.

Let a € R be a fixed element and f : R? — R be additive. Then

f(zy) = f(z,y) +2f(a,a) — 2f(a,a)
=flz+a+a,y+a+a)—2f(a,a)
= f((z+a)+a,a+ (y+a) —2f(a,a)
= f(z+a,a)+ f(a,y +a) —2f(a,a)
fle+a,a)— f(a,a) + f(a,y +a) — f(a,a)
A () + Az(y),

~—~ ~ —~

where
Ay(z) :== f(z +a,a) — f(a,a)
and

As(y) = fla,y + a) — f(a,a).

Now we show that Aq, Ay are additive functions on R. Consider

Az +y) =f( z+y+a,a)— f(aa)
(x+y+a,a)+ fla,a) —2f(a,a)
( r+y+a+aa+a)—2f(a,a)
( +a,a)+ f(y+a,a) —2f(a,a)
( +a, a’) f(aaa)+f(y+ava)_f(ava)
:A1( )+ A1 (y).
Hence A; is additive. Similarly, one can show that
As(z +y) = Aa() + Az(y),

and hence A, is additive. Thus
f(xay) = Al(x) + A2(y)7

where A; and Ay are additive functions.
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3.3 DMultiplicative Cauchy Equations in Several
Variables

The multiplicative Cauchy functional equation

f(zy) = f(2)f(y), forx,yeR, (ME)

can be generalized to

f($1y17$2y27 L 7x’ny’n) = f($1,$27 LR >xn) f(y17y27 LR 7yn>

for (z1,xa,...,z,) € R™ and (y1,¥2,...,yn) € R". Here f : R® — R. We
want to find the general solution of this functional equation. To make
the problem easy to understand we take n = 2. Thus the above equation
reduces to

f(@1y1, w2y2) = f(@1,22) f(y1,2) (FE1)
for all z1,x2,y1,y2 € R.

Theorem 3.5. The general solution f : R?> — R of the functional equa-
tion
f(@1yr, way2) = fz1, 22) f(y1, y2) (FEL)
s given by
f(a1,2) = My(z1) Ma(x2), (3.8)

where My, Ms : R — R are multiplicative functions.

Proof. Let a € R be a fixed element and f : R?> — R be multiplicative
with f(a,a) # 0. Then

J(@.y) = f(2,y) f(a.) f(a,a) f(a,a)
f(zaa, yaa) f(a, >

(
= f((za)a, a(ya)) f(a,a)~?
= f(za,a) f(a,ya) f (a a)~?
= f(za,a) f(a,a)™" f(a,ya) f(a,a)™"
= M (x) Ma(y),
where
M (z) := f(za,a) f(a,a)"
and

Ma(y) := f(a,ya) f(a,a)~".
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Now we show that M, My are multiplicative functions of R. Consider

My(zy) = f(zya,a) f(

(zya,a) f(a,a) f(a,a)”
(zyaa, aa) f(a,a)™>
(za
(

a,a)”?

i
- =

za,a) f(ya,a) f(a,a)~
za,a) f

1(w) M.

Hence M; is multiplicative. Similarly, one can show that

- =

a)~" f(ya,a) f(a,a)™"

(a,
(

1 y)-

I
=

My (y) = Ma(z) Ma(y)
and hence M5 is multiplicative. Thus
f(@,y) = My(z) Ma(y),
where M, and M, are multiplicative functions. O

This theorem says that any multiplicative function of two variables
on R? can be written as a product of two multiplicative functions in one
variable.

This theorem is also true for general n. That is, if f : R™ — R satisfies

f(xlylvay% e ,:cnyn) = f(xlax% e ,ZL’n) f(ylay27 e ,yn)

for all (z1,22,...,2n), (y1,Y2,---,Yn) in R then
flar, @, ... ) = H My (zy),
k=1

where My : R — R (k= 1,2,...,n) are multiplicative functions.

3.4 Other Two Cauchy Equations in Several Vari-
ables

In this section, we consider the remaining two Cauchy equations in
several variables. Analogous to Theorem 3.1 and Theorem 3.5, one can
establish the following results.
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Theorem 3.6. The general solution f : R? — R of the functional equa-
tion
f(@1+y1, 22 +y2) = f(21,22) f(y1,92) (FE2)
18 given by
flx1,20) = Ey(x1) Ex(x2), (3.9)
where Fq, E5 : R — R are exponential functions.

In general every exponential function f : R™ — R can be written as
n
f(l’l,l'g, s ,.’In) = H Ek(xk)a
k=1

where E, : R — R (k= 1,2,...,n) are expenential functions.

Let Ry = {z € R|x # 0}. The following theorem says that any
logarithmic function of two variables on R2 can be written as a sum of
logarithmic functions in one variable.

Theorem 3.7. The general solution f : R3 — R of the functional equa-
tion
fleryr, xoy2) = flan, x2) + f(y1, v2) (FE3)
s given by
f(z1,22) = L1(z1) + La(x2) (3.10)
where L1, Lo : Ry — R are logarithmic functions.

In general every logarithmic function f : R — R can be written as

f@r, e, wn) = ()
k=1

where L : Ry = R (k= 1,2,...,n) are logarithmic functions.

3.5 Concluding Remarks

From the alternative proof of Theorem 3.1, it is clear that Theorem
3.1 also holds on an abelian semigroup. Similarly Theorem 3.5 holds on
an abelian semigroup. Recall that a semigroup S is a set together with
associative binary operation o : § x S — S. Thus a semigroup need not
have an identity element and its elements need not have inverses within
the semigroup.

Kuczma (1973) proved the following result concerning Cauchy func-
tional equation in two variables.
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Theorem 3.8. Let (S,4) be a commutative semigroup and (G,+) be
an abelian group. If f : S? — G satisfies the functional equation

f(x+u,y+v):f(m,y)—|—f(u,v)

for all x,y,u,v € S, then there exist homomorphisms A1, As : S — G
such that

f(z,y) = Ai(z) + A2(y)
forallz,y e S.

3.6 Exercises

1. Find all continuous solutions f : C — C of the additive Cauchy
functional equation

fle+y)=fl@)+fly) VaeyeC

by reducing it to a pair of functional equations obtained by substituting

r=x1+ix, y=y1 +iye, f(x)=g(x1,22) +ih(x1,22).

2. Find all continuous solutions f : C — C of the functional equation
fe+y) +fle—y =2f(x) VzyeC
by reducing it to a pair of functional equations obtained by substituting

T =1 +122, Y=y +iye, [(2)=g(z1,22) +ih(z1,22).

3. Find general solutions f : R? — R of the Sincov functional equation

f@y) + fly, 2) = f(z,2)
for all z,y,2z € R.

4. Find all differentiable functions f : R? — R that satisfy the cocycle
functional equation

flx,y) + fle+y,2) = fle,y+2) + f(y, 2)

for all z,y,z € R.
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5. Find all symmetric functions f : R™ — R that satisfy the functional
equations

fler+y1, 20 +y2, - xn +yn) = f(o, 22, 2n) + fyn,y2,- - Un)

and
f(l',l’,"' ,ZZ?):I'
for all ,z1,y1,T2,Y2, s T, Yn € R,

6. Find all functions f : R? — R that satisfy the Euler functional equa-
tion

f@zyz) = 2 fla,y)  Va,yeR, zeR~{0}
and satisfying the additional conditions
FO,y) = f(0-y,1-y) =y" f(0,1) fory#0
and
£(0,0) = 2* £(0,0)
where k is a real constant.
7. Find all functions f : R — R that satisfy the functional equation
fle+y,2)+ fly+z2)+ flz+z,y) =0

for all z,y,z € R. [Hint: Substitute x = v + %, Yy=—-u—v-+ % and
z=u+ % and define a new function g(u,t) == f (% —u, £ +u).]

8. Find all functions f : R — R that satisfy the functional equation
fpr,as) + f(ps,qr) = f(p,q) f(r,s)

for all p,q,r,s € R.

9. Let R* be the set of nonzero real numbers. Find the general solution
f : R? — R* of the functional equation

fluz —vy,uy +o(z +y)) = f(z,y) f(u,v)

for all u,v,x,y € R.

10. Find all functions f : R? — R that satisfy the functional equation

fluz + vy, uy +vz) = f(z,y) f(u,v)

for all z,y,u,v € R.






Chapter 4

Extension of the Cauchy Functional
Equations

4.1 Introduction

The set of all values of the variables, on which the functional equation
is supposed to hold, is called the domain of the functional equation. For
instance, the domain of the functional equation

flz+y)=f(x)+ fly)  Va,y € (0,00) (4.1)

is R%r. A function satisfying a functional equation on a given domain
is called a solution on that domain. In this chapter, we only consider
the problem of extending the additive Cauchy functional equation from
a smaller domain to a larger domain that contains the smaller domain.
The other three Cauchy functional equations can be extended similarly.

4.2 Extension of Additive Functions

Let [a,b] be an interval in R, and let f : [a,b] — R be an additive
function on the interval [a, b] in the sense that (1.1) holds for all z, y, z+y
in [a,b]. Does there exist an additive function A : R — R such that
A(z) = f(x) for all x € [a,b] (that is A‘[a o= )?

The following theorem was proved by Aczél and Erdés (1965).

Theorem 4.1. Let a > 0, and let f : [a, 00) — R be an additive function
on [a,00). Then there exists an additive function A : R — R such that

A(z) = f(x)

for all x € [a, 00).

49
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Proof. Define a function A : R — R by
Az —y) = f(z) — fy) (4.2)
for all ,y € [o,00). Now we show that
(a) A is well-defined;
(b) A is an extension of the additive map f;
(c) A is an additive function on R.

First we show that A : R — R is well-defined (that is, the definition
of A given by (4.2) is a valid definition of a function).

A
Let x,u,y,v € [o,00) and suppose
T—u=y—v. (4.3)
Hence
r+v=y+u

= fl+v)=fly+u)

= f(@)+ f(v) = f(y) + f(u)

= [f(@) = f(u) = fly) = f(v)

= Alx —u) = Ay — v)

Therefore A is well-defined.

Next we show that A is an extension of f. For any ¢ € [, 00), there
exist x,y € [a, 00) such that

t=x—y.
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Hence
A(t) = Az —y)
= f(z) = f(y)
=fly+t)—fy)
= fy)+ ) — f(y)
= f(t)

for alll ¢ € [, 00). Thus

Finally, we show that A is additive on the set of reals, R. For any s,t € R,
there exist x,y, u,v € [o, 00) such that

|let,00)

s=x—y
t=u—w.
Note that u + = and y + v are in [a, 00). Also
s+t=(x+u)—(y+v).
Computing A(s +t), we see that
A(s+t)=A((z+u) — (y +v))
flz+u) = fly+v)
= f(x) + fu) = f(y) — f(v)
f(@) =) + f(u) = f(v)
z—y)+ Alu—v)
)+ A(t)

for all s, € R. This completes the proof of the theorem. O

A
A

(
(s

This theorem says that the general solution of the Cauchy functional
equation

flx+y) = flx)+ f(y)

for all z,y € [o,00) is the same as the Cauchy functional equation for
all z,y e R.

Remark 4.1. Note that the domain [, 00) is unbounded and therefore
if v,y € [a,00) then

T +y € o, 00).
However, if z,y € |a,b] where [a,b] is a bounded interval, then x +y is

not necessarily in [a,b]. Hence the proof of the above theorem does not
work for a bounded interval.
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The following Theorem is due to Daréczy and Losonczi (1967).

Theorem 4.2. Let f : [0,1] — R satisfy (1.1) for all x,y,z+y in [0, 1].
Then there exists an additive function A : R — R such that

for all x € [0,1].

Proof. Let x € R be any real number. Then x can be expressed as

g = g +a, (4.4)

where n is an integer and z’ € [0, %) Define a function A: R — R as

1
A(z) :=nf <2> + f(2"). (4.5)
Clearly A is well-defined. Hence it is enough to show that
(i) A(z) = f(z), Yz €]0,1], and
(ii) A is additive on R.

To prove (i) we need to consider three cases: (1) z € [0,1), (2)
z € [3,1), and (3) z =1 (see figure below).

vef0.3)
Then n =0,
z=ax

T e [%,1)
z€10,1] = | Thenn =1,
a::%—i—x’

rz=1
Then n = 2,
=0

Case 1. Suppose = € [0, %) . Then n =0 and z = z’. Hence
A(z) = A(a')
= f(@')
= f(z)
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for all z € [0, %) .

Case 2. Suppose z € [5,1). Then n = 1 and = = 1 + 2’ where 2’ €

27
[O, %) Hence

M@=A<;+f>
=f (; + /(@)
{3+
= f(z)

for all z € [%, 1) .

Case 3. Suppose £ = 1. Then n = 2 and 2’ = 0.

Hence we have proved that

for all z € [0,1]. That is, A is an extension of f.

Next we show that A : R — R is an additive function on R. Let s
and ¢ be two arbitrary real numbers. Then they can be ex